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The grand canonical ensemble techniques—both Monte Carlo and molecular
dynamics—have become very popular in recent years, but no direct link between
the number fluctuation results from these simulation methods and a Kirkwood—Buff
theory has been established. In this article we look at Kirkwood—Buff integrals com-
puted using thermodynamic averages derived from grand canonical ensemble molec-
ular dynamics simulations and compare them to similar quantities derived from the
dielectrically consistent reference interaction site model many-body theory. These
calculations will be carried out for three different water models, SPC, SPC/E, and
TIP3P. (© 1999 Academic Press

1. INTRODUCTION

Improvements and development of experimental techniques that are used in the st
solutions have created a wealth of information. However, computational techniques
lagged behind, and this has resulted in a void in the fundamental link between the m
scopic observables and the microscopic details. Recently, computational models, st
those based on the grand canonical ensemble [1-7], have begun to bridge this ge
tegral equation theories based on the reference interaction—site model (RISM) theol
and which have well-known approximations [9] have been further developed to enabl
study of liquid mixtures [10—13]. Integral equation methods based on angular expar
methods have also been applied to liquid mixtures [14-16]. One area of success ft
integral equation methods has been in combination with the Kirkwood—-Buff theory |
17-20]. Kirkwood-Buff theory is a rigorous statistical mechanical theory that provi
a route to thermodynamic properties from microscopic properties. This well-known
ory uses fluctuations in the grand canonical concentration to create this tie throug|
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Kirkwood—Buff integral,G;; , which has been defined as

Gij E/ (gij —1)4nr2dr,
0

whereg;; is the radial distribution function for particlésand j. These integrals, related to
number fluctuations, have been used in a variety of contexts to provide a method of eval
ing thermodynamic potentials, especially free energies and chemical potentials. Howe
the direct implementation of these formulae with simulation distributions is unstable f
many reasons. Yet this relationship has been successfully applied to a number of mixt
with integral equation methods [14-16, 21]; recently NPT simulations in conjunction wi
Kirkwood—Buff theory have been applied to an argon—krypton mixture [22]. In this paper\
use grand canonical ensemble molecular dynamics (GCMD) simulations to determine
Kirkwood—Buff integrals for three water models, SPC [23], SPC/E [24], and TIP3P [2&
and compare these results to those determined by the dielectrically consistent refer
interaction site model (DRISM). This will provide a test of the grand canonical ensemt
molecular dynamics simulation’s ability to predict thermodynamic quantities from micr
scopic details.

In Section 2 we will describe the grand canonical ensemble simulation method anc
Section 3 we will derive the thermodynamic averages needed to determine the Kirkwo
Buffintegral. In Section 4 we will present the details of the calculations and the comparis
Finally, in Section 5 the conclusions will be presented.

2. GRAND CANONICAL ENSEMBLE

The Lagrangian [7], in virtual variable space, for the homogeneous grand canoni
ensemble water simulation may be written as

N L migs? . MexS?
lo . ex .
Lovt =D bl = U@ = U@ + Y~ 6%, — Upia(@)
i=1 a=1 a=1
+(—=N)(N+DkgTIN(N 4+ 1) +[1 — (v — N)]Nks T In(N), 1)

W
—(v=N)USN (@) + — (f + DksT In(s) + ?vz +vpex+ (N +Du®

whereq and p are the generalized coordinates and momeNtés the number of water
moleculesn is the number of atoms in each water molecule, ne-,3, ande is used to
distinguish the extra water molecule in the system. The intermolecular potential ene
between the extra water molecule and the other water molecules in the simulation bc
scaled. This scaling represents the degree of inclusion or exclusion of this water mole
into the system. This creates a binary system composed whater molecules that are
indistinguishable and one extra distinguishable water molecule that is screened from
N water molecules with a degree of screening that is controlled by the fractional part
the number extension variable The number extension variable couples the system to tf
particle bath, and the temperature extension variableuples it to the temperature bath.
The variableN, which represents the number of water molecules in the physical syste
is the integer part of the continuous number variabl&he fractional part of the number
extension variablg, which is defined a& — N), represents the extent of the coupling of the
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extrawater molecule to the othrwaters. Whel approaches 1 from below, the extra wate
molecule is fully incorporated into the system and becomes indistinguishable, the nur
of waters in the physical system changes frdrto N + 1, and a new distinguishable extra
water is inserted into the system; the total interaction potential energy of this new par
with the(N + 1) other particles is scaled. Whérapproaches 0 from above, the extra wate
is completely uncoupled from the system and removed. The number of waters in the phy
system decreases by 1 ¢N — 1), and theNth water molecule of the physical system is
converted to the new distinguishable extra particle. The interaction potential energy bet
this extra water and theN — 1) other waters in the simulation box is scaled. The numb
extension variable behaves in a manner that is similar to the Born coupling term [26].

The firstthree terms on the right-hand side of Eq. (1) are the kinetic energy, the intramc
ular potential energy, and the intermolecular potential energy fadtivater molecules that
make up the physical system. The next three terms are similar but are for the extra pat
the last of these is the intermolecular potential energy between the extra water and the
N waters in the system. This is the term that is scaled by the number extension vari:
The next two terms are the kinetic and potential energy terms for the temperature extel
variable. The potential energy for this variable is written as a function of the numbe
degrees of freedont,, of all of the water molecules in the system.

The last five terms are the kinetic and potential energy terms for the number exter
variable. The potential energy for this extended variable is written in terms of the excess
ideal chemical potentials. The criteria used to separate the chemical potential is as foll
The excess chemical potentialy, originates from the intermolecular interactions only. Th
ideal chemical potential;°, comes from the kinetic and intramolecular potential energie
Because of this separation the ideal chemical potential is the same for all the particl
the system, i.e., for th&l waters plus the extra water. This term does not include the fac
that comes from the indistinguishability of tiNewaters nor the assimilation/dissimulation
contribution of the extra water. Both these terms are accounted for in the last two tern
the potential of the number extension variable.

The equations of motion are derived from Lagrange’s equation. For each atom of «
water molecule there will be three equivalent equations for each of the three Carte
coordinates. The equations of motion are

auUN dUNN aueN
My 20 = [— g _ St _ (- N)aq'_mf} ComSe. (@)
| o | o | o
N aus aush »
measz%a = {— Témra —(v— N)aqmter] — 2Mey SSew (3
(S3 (597

N n n
" . . ks T
Q8= > miustf, + ) MeSt, — (F+ 1=, @
i a=1 a=1 4

and
Wi = —UER + tex + (N + Dkg T IN(N + 1) — NkgT In(N). (5)

These equations provide a set of coupled ordinary differential equations that can be s
numerically. A similar derivation can be carried out in which the kinetic energy of the ex
particle is also scaled [7].
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This generalization of the potential term for the number extension variable has sev
advantages. First, it dynamically incorporates the ideal gas contribution to the chem
potential for both distinguishable and indistinguishable particles in the simulation bc
and it gives the correct ideal gas limit for the system. The second advantage is th:
approaches the correct values in the limits near the extremum values of the fractic
part of the number variabl€y — N); this will be considered in detail next. The extended
Hamiltonian for the water grand canonical ensemble, with this definitidd,ofs equal
to

n

N
p'a p
H= Z : + U|ntra UlwteNr Z P + Ulntra+ (‘) - )U|(ra1{:lar

i=1 a=1 2mios?
+p—§+(f + DkgT In(s) + P — vptex — (N + Dp®
2Q 2W &
—W—=N)(N+DksTIN(N+1) —[1 — (v — N)]NksT In(N). (6)

The fractional part of the number variable,— N), is defined on the interval [0, 1]. On
the right-hand side of this interval, the value of the extended system Hamiltonian wt
the number variable approaches unity from below, i.e., in the limivas N) goes to 1,

is

(v—lll[l];]elH Z Z 2m|a52 |ntra + Umter + Z ea + Ulntra + Umter

i=1 a=1
P kT + P (Nt D

2Q 2W
—(N+1u® — (N +DkgT In(N + 1)
N+1 n p

i N+1 N+1,N+1
=> > NFEL gt TS + (f + DkgT In(s)

i=1 a=1 2m;,s? Vi I 2Q

p2
o ~ (N+ D [sect 1 +keTIn(N + 1],

which is the Hamiltonian for a system @f + 1) indistinguishable water molecules. At the
other extremum(v — N) =0, we have

, p . P
(v_“m_mH Z Z : |ntra |nter Z 2Me, 52 |lr§1tra+ ﬁ

i=1 a= l
+(f + DksT INS) + ?/Vv Npzex— (N + 1 — NkgT In(N)
zzN:zn: P L UNN Z ue +i§
2 2mm Uitra + Uinter PMey 52 Uintra 20
P’

+ (f +DksT In(s) +

o~ N [ftex+ 1° + ke T In(N)] —



KIRKWOOD-BUFF,G;;'S 139

This is the Hamiltonian for a non-interacting binary systemNoindistinguishable water
molecules and 1 distinguishable water molecule. Another advantage of this partitiol
is that the contribution to the ideal gas chemical potential from the kinetic energy and
intramolecular interaction does not affect the equations of motion of the molecular dynar
simulation.

3. THERMODYNAMIC AVERAGES

In this section we will show that the equations of motion derived from the Lagrangiar
Eq. (1) produce configurations usefulin evaluating properties in the classical grand cano
ensemble. The partition function for this extended system grand canonical ensemble ¢

defined as
o0 h_f
: W/dps/ds/dpg/dé/dp/dqé[H—E],

where the extended HamiltoniaH, in virtual variable space for a homogeneous system
defined in Eq. (6), with the number extension tgim- N) changed t&.
SubstitutingH into the equation foEg,

/dps/ds/dpg/dg/dp/dqfslzzz I'“ + Uhra + Uiniar

[
Il

]

n

Pe eN & B B 0
+ 2 PN, 2 5T Uinra+ EUinter + W (N+8puex— (N+Du” —E(N+1ksT
xIN(N+1) — (1—&)NksT |n(N)+2p5 + (f +DkgT In(s) — E]. @)

First, transform the momentum terms of all the particles

Pi /
s P

and separate the HamiltoniaH, into the sum

13
2Q

whereN represents the particles of the physical sysempresents the extra particle, and
represents the fractional part of the number extension variable. The individual Hamiltol
terms are defined as

H=HNn+He+H: + —= + (f +DkgT In(s),

P.a

+ Ulntra + U|nter’
i=1 a=1

He—z P,

|ntra + %-Ulnter7



140 LYNCH, PERKYNS, AND PETTITT

2
He = Z%V Nitex — &tex — (N 4+ Dp® — £(N + Dkg T In(N + 1)
—(1—&)NksT In(N).

Substituting these definitions into Eg. (7) we obtain

zhl\_”f/dps/ds/dpg/ds/dp’/dq
%

The integrals over the temperature extension variabkesd ps, can be evaluated following
the same scheme proposed by 8l{&7] and lead to

i JZ0kT E
NZ /dpé/dé/dp/ T+ DkeT exp(kBT)
xexp( HN)eXp<_H >e p( HS)

ke T ke T keT /°

ExpandingH; and integrating with respect o we obtain

~ J2TQkeT 2l T
—Z . /dg/dp/d DT XA

&3]
Il

XS(f+l)8|:HN +Het+He — E+ 22+ (f +DksT |n(5)} (8)

=
=

[x]

x exp(—BHN) exp(—BHe) exp[B (N pex + & pex + (N + D
+ &N+ DkgTIN(N + 1) + (1 — &)NkgT In(N))]. 9)

Next we expand{. andHy and integrate with respect to the momentum terms

= h~f /27QV2rW
E=) exp(ﬁE)/ds/dp/dq
szjo NI (F+1)
n p,z
X expl (ZZ 2 ~ |ntra+ Umter)]
i=1 a=1 Mg
n p/2
X exp|— (Z e Intra+§u,ﬁt’ir> exp[ﬁ(NMex+§Mex

+(N+Dp®+ &N+ DkgTIn(N + 1) + (1 — )Nk T In(N)) ]

Simplifying, we obtain

Zﬁl, sz(rf QvenW p(ﬁE)/ds/dq

[Il

x exp[_ﬂ (Ulr,:ltra + Ulnter)} exp[_IB(Uiﬁtra + %_Umter)] eXp[IB(NMGX + éﬂex
+(N+Du’+ &N +DkgTIn(N + 1) + (1 — )Nk T In(N))],

whereA is the deBroglie wavelength.
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How does this partition function reduce for the case of an ideal gas? For an ideal ga
intermolecular interactions are nonexistent &rckeduces to

2 AT «/2 Qv2
g = ZI\T 7Q 1;T ex [X,BE)/d‘%'/dq eXp[_ﬁ( |ntra+Umtra)]
N=0

x eXp[B(Nptex+ Epex+ (N + D’ + &N + DkgT In(N + 1)
+ 1 -5NkTIn(N))],

which can be further simplified to

Z AY /27 Q27 W
g Z T % exp(BE)Zn exp(BN 1) Ze exp(B )
N=0

x / de explEB (ex+ (N + DksT IN(N + 1) — Nkg T In(NY)],

whereZy andZ, are the configurational integrals for thieparticles and the extra particle in
the system, angd is the sum of the excess and ideal chemical potentials faXtparticles.
We can perform the integral ovér

© At BA. /o
- Z %M exp(BE)Zn exp(BNw) Ze exp(B i)
«NU (f+1)

y exp[B(pex+ (N 4+ DkgT In(N + 1) — NkgT In(N))] — 1
Bliex+ (N 4+ DksT IN(N + 1) — NkgT In(N)]

This results in a grand canonical partition function that includes multiplicative terms fr
the temperature extension variallz,

and the number extension variable and the extra partgle,

exp[B(uex + (N + DkgTIn(N + 1) — NkgT In(N))] — 1

_ ./ fe 0
Ce = VarWA = Zeexpfu) Bluex+ (N + DksT In(N + 1) — NkgT In(N)]

The variablefe represents the number of degrees of freedom for the extra particle. 1
clearly shows that the proposed Lagrangian reproduces a statistical mechanical grand c
ical partition function but one that includes the contributions from the extension variab
Also, fromC;, it is clear that if.° for the extra particle is written as

1 . 2
= nh / dpe / dqeexp<—ﬂ l 2n?::s2 +UiﬁtraD,
a=1

C: will reduce to+/27 W times the excess chemical potential term.
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For the general case we can take the partial derivative of the grand canonical parti
function with respect to the excess chemical potential

I8 -
=S RN exENBlec + ke TN [ di [ o

o N
x expEB(ex+ (N + DksT In(N + 1) — Nkg T In(N))]

X exp(—,B [Ulwtra Ulr,;lteNr |ntra + Eulﬁt’\elr} )

+ % exp(NB[uex+ ks T |n(N)])/dé /dq

x (BE) explEB(pex+ (N + ks T IN(N + 1) — Nkg T In(N))]

x exp(—ﬁ [Ulrl:‘tra Ulr’:ltglr |ntra + Sulﬁgr}) (10)

whereCy is defined as

AT explB(N + 1)y ZrQV2rW expBE)
f+1

Co =
If we write
ZN,e = /dq eXp(_:B[ intra + Ulnter Intra éUInter]) (11)

substitute into the equation for the partial derivative and also dividg,by

1 9B
Ea,Uvex

Z (BN expNBlues +kaT IV [ de [ dq

m \

eexp[s,‘g(l/«ex-i' (N + DksT In(N + 1) — NksT In(N))]
. Z ?expNBles +kaT i) [ i [ o
 (B5) 2 XPEB(en + (N + DheTINCN + 1) — NG TInNYL, (12

This is equal to the average valueMfplus the average value &f

kT 0E In2
i 0 _ kBTa n
E Opdex 0 hex
= (N) + (§). (13)

The second derivative @& with respect tquex leads to the average values

ksT)? 9%E
o s = (N%) + 20NE) + (62, (14

The average value dfl is directly related the to derivative & in the grand canonical
ensemble
(kgT) 0E

(N) = —
E  Otex

(15)
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TABLE 1
Potential Parameters for the Water Models

SPC SPC/E TIP3P
r (OH) (pA): 1.0 1.0 0.9572
HOH angle (): 109.47 109.47 104.52
B x 1072 (kcal pA*?/mol): 629.4 629.4 582.0
A (kcal pA%/mol): 625.5 625.5 595.0
q(0): —0.82 —0.8476 —0.834
q(H): 0.41 0.4238 0.417

but for the GCMD this derivative is related to the sum Nfand &. Therefore, in the
determination of the Kirkwood—BufB;; values [18] the extra terms that depencanust
be included as

Vo?Gii + Vi = (N?) + 2(N§) + (§2) — (N)? — (£)?, (16)

whereV is the volume of the box and is the number density. This equation will be use
to determine the Kirkwood—Buff integral;;, from the GCMD simulations for the three
water models.

4. RESULTS AND DISCUSSION

In this section we will present the results of the calculations that were carried out on
three water models. The systems were equilibrated for 1 ns in the microcanonical (N
ensemble at a fixed initial density of 0.0334 and a temperature of 300 K before starting
GCMD. The potential parameters used for the different water models are listed in Tab
The initial values of the extension variables were set as follgws: N) =0.5, v =0.0,
s=1.0, and$=0.0. The criterion used for picking which of the initial water molecule
should be converted to the first distinguishable water is based on having the initial v
of Wi =0.0; this procedure has been described in detail previously [7]. The equation
motion were integrated with a 1-fs time step for 500 ps using the modified velocity Ve
algorithm proposed by Fox and Andersen [28] with periodic boundary conditions impo:s
The Rattle algorithm [29] was used to enforce holonomic constraints of the molecular bo
The Lennard-Jones interactions were truncatdd/at whereL is the box length, and an
Ewald summation method was used to evaluate the electrostatic interactions. Under
conditions there were, on average, two density changes per picosecond; i.e., there w
addition and/or a deletion of a water molecule twice for every 1000 time steps.

In Table 2 the predicted Kirkwood-Buff integrals are presented for the grand can
ical molecular dynamics simulations for the three water models. These values for

TABLE 2
Kirkwood-Buff Integrals

SPC —29.92 —27.680+ 0.001
SPC/E —29.60 —27.571+0.001

TIP3P —29.18 —27.500+ 0.001
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homogeneous system were determined using Eq. (16). The average vaNieB &fN&,

£, and&? were computed from the trajectory data for the last 100 ps of the GCMD simul
tions. The table also includes values obtained by solving the equations of the DRISM the
[10, 11]. Statistical mechanical theories such as the DRISM theory use a closed set of |
linear integral equations which have as their solution a complete set of site—site ra
distribution functions [10, 11]. The solutions to the equation systems are not exact for
model, and the underlying approximations are usually discussed in the language of clt
diagrams. The inexactness can be understood in terms of a proportionately small n
ber of missing and improper diagrams in the virial expansions of the distribution functio
relative to the formally exact expansions [9]. When thermodynamic quantities, such as ¢
pressibility, can be calculated from a set of distribution functions using two independ:
expressions they usually differ somewhat. The accuracy of an integral equation theor
often judged by how much such quantities differ [9]. The DRISM theory was developed
remove the inconsistency between independently calculated values of the dielectric con:
in electrolyte solutions [10, 11]. Where it has been tested, it also improves the consiste
of other thermodynamic quantities over its predecessors, the RISM and XRISM theo
[12]. Once the distribution functions are known over a large range of distances (compe
to simulation) the Kirkwood5's follow simply via [9]

Gij =47T/ rizjhij(rij)drij, (17)
0

wherei andj label atom (or site) types. Since the KirkwoGds are independent of which
site is chosen on a given molecule there is only one distinct value in a system of p
water. The difference between values calculated using oxygen—oxygen, oxygen—hydro
and hydrogen—hydrogen distribution functions is a good measure of the convergenc
the solution to the theory for a given model, and in this case they differ only in the fif
significant figure. As is usually done [12, 13, 30] with integral equation calculations v
add a small Lennard—Jones sphere to the bare charge located at each hydrogen at
each of the usual water models. This prevents catastrophic overlap of opposite charg
statistical mechanical approaches which sample the entire potential surface, while lea
the calculated structure and thermodynamics unaffected. This modification of the poter
was not carried out for the GCMD simulations. For consistency the same Lennard—Jc
parameters were used for all three models for the hydrogen—hydrogen interagtien,
0.020 kcal/mol andryy =0.40pA. The oxygen—hydrogen interactions were calculate
using the usual mixing ruleson = /€nn€oo andoon = (GHH + 000) /2.

The GCMD results are consistently smaller than the DRISM results. The results for
SPC model are 8% smaller, the SPC/E model results are 7% smaller, and the result
TIP3P model are 6% smaller. Note that the trenGiwith respect to model is the same for
both the integral equations and the simulations. In general integral equations give reasor
comparisons within a series but are less accurate than simulation.

5. CONCLUSIONS

The unigue advantage of simulations in the grand canonical ensemble is the abilit)
determine the excess chemical potential directly. From the excess chemical potential, ex
free energies, which are notoriously difficult to obtain from computer simulations, can a
be calculated. The comparison presented shows thatthe grand canonical molecular dyn:
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simulations are a direct route to the thermodynamic information from a microscopic syst
This opens up a whole new realm of possible problems that can be investigated with
new technique. Specifically, Kirkwood—Buff thermodynamic estimates of free energies
other thermodynamic potentials) as well as their derivatives can thus be evaluated as s
mechanical quantities in constant chemical potential ensembles. This work opens the
for consideration of more interesting multicomponent systems where rigorous Kirkwo
Buff stability criteria have been derived [21].
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